

Glazed Lists
Glazed Lists Internals: TreeList and Barcode, Part 1
Jesse Wilson, jesse@swank.ca
November 3, 2006

In this paper I discuss some of the interesting internals of Glazed Lists’
TreeList class, to provide algorithm candy to the interested developer. We
start with a source EventList. In this case, it’s a list of pets.

To apply the TreeList transformation to the source list, a user-provided
function specifies a tree path for each element in source. In this example, the

element Budgie is mapped the path /Low Maintenance/Birds/Budgie

The TreeList ensures there are list elements for all
parts of the tree path. Path elements that don’t
appear in the source list have list elements created
for them in the TreeList. These elements are
considered ‘virtual’ elements in the TreeList
because they have no counterparts in the source
list. In the diagram, these virtual elements are all green.

One consequence of having virtual elements is that when a source element is
deleted (such as Goldfish), it may leave behind a parent that has no children
left (ie. Fish). When this happens, TreeList automatically deletes the obsolete
virtual parent element. Similarly, inserted elements may cause TreeList to
create the required virtual parents.

In order to respond to changes, TreeList must be able to map between indices
in itself (0 thru 10) and the indices in the source list (0 thru 4). For example,
if the user calls treeList.remove(8) the TreeList handles this by mapping
index 8 in itself to index 3 in the source list, then calling
sourceList.remove(3). Similarly, if TreeList receives notification that the
source list has been updated at index 1, TreeList will map this index and

notify its listeners that TreeList index 4 has been updated. Although they use different indices in the different
lists, the updated value is Welsh Terrier in both cases.

This mapping is implemented using our custom ADT “Barcode” that manages sets of indices – blue (real)
indices and green (virtual) indices. There’s also an implicit set of indices – the complete set of indices, which we
call overall indices. Once we tell Barcode that indices 3, 4, 7, 8 and 10 are blue and the rest are green, it can
answer our questions:

• what’s the overall index of the first blue element?
• what’s the green index of the element at overall index 9?
• what color is the element at index 6

Barcode is dynamic, so we can tell it that 5 blue elements have been inserted at overall index 8 and it will adjust
the mapping.

Barcode is a useful ADT because it manages index-mapping state in a general way. In FilterList, it conveniently
manages both filter state and index mapping. In UniqueList and GroupingList, Barcode manages the indices of
duplicate elements.

Glazed Lists
Glazed Lists Internals: TreeList and Barcode, Part 2
Jesse Wilson, jesse@swank.ca
November 6, 2006

In the first part, I showed how Glazed Lists’ Barcode ADT is used to provide mappings for a subset of a list’s
indices. In this paper, we expand on those concepts.

We have already distinguished between nodes that are real (shown in blue) and virtual (shown in green). A value
is real if it exists in the source EventList, or virtual if it was created by TreeList to provide a missing parent for
the tree structure. This is the real/virtual state of a node.

Nodes in trees can be expanded or collapsed. Consider the tree views in Windows Explorer and the Mac OS X
Finder. Folder nodes can be collapsed, hiding everything within. When they’re expanded, the contained files
become visible. Note that a collapsed node is itself visible – it is the child
nodes that become hidden. Therefore, we have two new states for each node:
the expanded/collapsed state and the visible/hidden state.

A node is expanded or collapsed directly. To modify this state on a node in
the user interface, locate the node and click to toggle its expand/collapse
icon. The hidden/visible state is less direct. To hide a node, collapse any of
its ancestor nodes such as its direct parent or the root node. Conversely to
make a node visible, expand all of its ancestor nodes.

TreeList manages hidden/visible using a same pattern described in the first
paper for real/virtual but with a different set of colors. For this example,
hidden nodes are red and visible nodes are aqua. When a user requests the
value at visible index 2, Low Maintenance, TreeList maps this to index 5 in
the overall tree. The reverse mapping is also used: if the overall index 8, Parrot, is updated then TreeList
notifies its listeners about a change at visible index 5.

The final piece of this puzzle is combining hidden/visible filtering with
real/virtual data injection. Combining our two pairs of states, a node is either
real+visible, real+hidden, virtual+visible or virtual+hidden.

Suppose the source element Budgie is updated. TreeList will map its source
index 3 to overall index 7 because four virtual elements precede it. Then the
overall index 7 is mapped to visible index 4 because three hidden elements
precede that. Finally,
TreeList notifies its
listeners about the
update at visible
index 4.

A special version of
the Barcode ADT performs this index conversion in a
single step – given a source index it produces the related
visible index or vice versa.

The Barcode ADT is the foundation of TreeList, making it
possible to track both virtual nodes and collapsed nodes
without sacrificing simplicity or performance.

