
LIST S

LIST B

LIST C

LIST Z

Flow of Updates

Flow of Dependency

Suppose we have an EventList, Z, that
depends on two EventLists, B and C. 
Each of these EventLists depends on the
source EventList, S.

The EventList Z can depend on multiple
source EventLists because it may filter
one EventList based on the contents of
the other.

After an EventList is updated, it updates all listening EventLists. Dependent EventLists are
in an undefined state after their source is updated, but before they have received notification.

LIST S
[OK]

LIST B
[!]

1. List S is updated:

LIST S
[OK]

LIST B
[OK]

2. List B is notified:

Then S will update B.

LIST S
[OK]

LIST B
[!]

LIST C
[!]

LIST Z
[!]

LIST S
[OK]

LIST B
[OK]

LIST C
[!]

LIST Z
[!]

LIST S
[OK]

LIST B
[OK]

LIST C
[!]

LIST Z
[!]

Suppose S is modified.

Then B will update Z. But
Z depends on C, which is now 
undefined because it has
yet to be notified by S.

Glazed Lists: Managing Notification Dependencies with ListEventPublisher
January 2005
http://publicobject.com/glazedlists/

Jesse Wilson, Lead Developer
O'Dell Engineering Ltd.



LIST S

LIST B

LIST C

LIST Z

Flow of Updates

Flow of Dependency

Suppose we have an EventList, Z, that
depends on two EventLists, B and C. 
Each of these EventLists depends on the
source EventList, S.

The EventList Z can depend on multiple
source EventLists because it may filter
one EventList based on the contents of
the other.

After an EventList is updated, it updates all listening EventLists. Dependent EventLists are
in an undefined state after their source is updated, but before they have received notification.

LIST S
[OK]

LIST B
[!]

1. List S is updated:

LIST S
[OK]

LIST B
[OK]

2. List B is notified:

Then S will update B.

LIST S
[OK]

LIST B
[!]

LIST C
[!]

LIST Z
[!]

LIST S
[OK]

LIST B
[OK]

LIST C
[!]

LIST Z
[!]

LIST S
[OK]

LIST B
[OK]

LIST C
[!]

LIST Z
[!]

Suppose S is modified.

Then B will update Z. But
Z depends on C, which is now 
undefined because it has
yet to be notified by S.

Glazed Lists: Managing Notification Dependencies with ListEventPublisher
January 2005
http://publicobject.com/glazedlists/

Jesse Wilson, Lead Developer
O'Dell Engineering Ltd.

So we need to change the notification order from { S, B, Z, C } to { S, B , C, Z }. Although
in this case the result is breadth-first, in general the only safe notification order

may be arbitrary. Therefore the ListEventPublisher manages all update notifications.

LIST S

LIST B

LIST C

LIST Z

1

2 Flow of Updates: S to B

Flow of Dependency

Flow of Updates: B to Z

3

8
Flow of Updates: S to C4

5

Flow of Updates: B to Z

6

7

The ListEventPublisher acts as a service for notifying listeners of change events
with proper dependency management. All connected EventLists share one 
ListEventPublisher so that it has a global view of notification dependencies.

When an EventList tells the ListEventPublisher to fire an update event to a listener, the
update event may be queued so that the listener's other dependencies may be brought

up-to-date as well. To accomplish this, the ListEventPublisher maintains a queue of
unfired events. Because one instance is shared, the method firing events has access to the

same queue, which can be updated and as necessary.
The ListEventPublisher's fireEvent() method is reentrant, making it possible to pass

queues of unsatisfied listeners up and down the call stack.

Numbers on flow liness indicate
the sequence in which they are called.

Note that this problem is orthogonal to concurrency and locking. The notification sequence
problem exists in both multi- and single-threaded environments. The ListEventPublisher
class is not thread-safe but may be used concurrently with an external locking strategy.

Note that sometimes the ListEventPublisher cannot automatically infer a dependency and
it must be configured explicitly. For example, a dependency may also exist via a GUI

listener such as a Swing ListSelectionListener or an SWT SelectionListener. To
accomplish this, use EventList.getPublisher().addDependency(EventList, ListEventListener).


