
Generics and Java 1.4
with one codebase
By James Lemieux and Jesse Wilson

Glazed Lists was in a unique position with the introduction of generics in JDK 1.5. While
Generics make sense almost anywhere in a codebase, it is extremely appropriate for
use with the Collections API. Glazed Lists sits atop java.util.List and so we were bound
almost by moral fiber to support generics. The project however, has an army of users
that aren't moving off of JDK 1.4, the platform on which Glazed Lists was born.

Our options were limited:

• Fork the codebase for each version of the source we are interested in publishing and
repeat all development and bug fixes to all codebases.

• Introduce runtime dependency on Retroweaver. This library supports Java 1.5 lan-
guage features, while still retaining total binary compatibility with 1.4 virtual machines.

• Find a clever way to downgrade JDK 1.5 source to JDK 1.4 source

Being devout engineers in quest of “the best way,” we vowed to exhaust all attempts to
keep a single codebase free of external dependencies before relying on alternatives.

To succeed in converting JDK 1.5 to 1.4 source it would have to be at the parse tree
level. Generics are implemented by the compiler rendering source code structurally
equivalent between the two versions.

The Java language is wrought with complexity, which makes source code translation
tools very difficult to write. The lack of an open source tool for Java language manipula-
tion is confirmed by this fact. Even parsing source code to a tree and writing that back
out as source was an extremely difficult task. Further searching turned up a solution in
the most unlikely of places: our own backyard.

Inspecting tools.jar which ships with the JDK is like opening all of the Christmas pre-
sents you'll ever get at once. It includes the java compiler, its parser, and many other
tools for language manipulation including something called a TreeTranslator. This visitor
traverses the parse tree and makes uniform changes to it. Our luck didn't end there as
there is a subclass of TreeTranslator called Lower which is responsible for removing
JDK 1.5 syntactic sugar (generics, inner classes, class literals, assertions, foreach
loops, etc.)

Glazed Lists
 http://publicobject.com/glazedlists/

We couldn't believe our good fortune! The compiler team at Sun
had already completed our work and all we had to do was as-
semble the tools that they had given us. We wrote a simple
wrapper around JavaCompiler that caused the class to output
source code rather than bytecode. Configuration and invocation
of JavaCompiler required only 10 lines of code.

With Ant and our new generics-stripping tool,
we can use our Java 1.5 source tree to create
a Java 1.5 .jar and a Java 1.4 .jar. By convert-
ing to source first, we can compile using JDK
1.4. This guarantees that we have no depend-
encies on classes or methods found only in
Java 1.5.

This solution works well for us but it has some
limitations:

• The source code emitter in tools.jar doesn’t
support anonymous inner classes or over-
ridden return types

• We don’t get to use the Java 1.5 class library
such as the new concurrency package or
Formattable interface

See also:

Glazed Lists: http://publicobject.com/glazedlists/

Antlr: http://www.antlr.org

Retroweaver: http://retroweaver.sf.net/

Java 1.5 Generics Tutorial: http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

Glazed Lists
 http://publicobject.com/glazedlists/

Java 5.0

Source

Java 1.4

Source

custom javac

main method

JDK 1.4 Compiler

Java 1.4

glazedlists.jar

JDK 5.0 Compiler

Java 5.0

glazedlists.jar

