Glazed Lists: Sorting Dynamic

November 2004
http://www.publicobject.com/glazedlists/

Data Efficiently

O//D|/G||L||AJ|E

N

N |+

Jesse Wilson

Software Developer
O'Dell Engineering Ltd.
jesse@odell.ca

Sorting is a well understood problem in computer science. There exist many
algorithms to efficiently sort a list of objects. All of these algorithms work on the
premise that the data to be sorted is static. Therefore when only a single
element is changed it is necessary to sort the entire data set again.

Because Glazed Lists manages a dynamic list of data, sorting the entire data set
on every change is not satisfactory. This requirement has prompted the
development of a new strategy that can efficiently sort live data.

To implement a live sorting strategy it is necessary to create a map between the
sorted and unsorted data.

The simplest solution is to implement this map using an array of integers. To get
the sorted index from the unsorted index, simply fetch the value in the map at
the unsorted index. Unfortunately this solution does not scale well for lists with
a large number of elements. When a single element is inserted into the unsorted
list, it will be given a new index into the sorted list. The insert requires all
indices in the map to be shifted. For a list of N elements, a single insert costs
O(N) operations.

To overcome this limitation, Glazed Lists' SortedList uses a pair of balanced
trees to implement the map. The first tree mirrors the source list's unsorted
ordering. Each node in this tree points to a corresponding element in the
second tree. The second tree tracks the source list's elements in sorted order. Its
nodes include pointers back to the corresponding nodes in the first, unsorted
tree. Both trees support operations to get the node at a specified index, and to
the get index for a specified node. All tree operations cost O(log N). To use
these trees to get the sorted index from the unsorted index, find the node in the
unsorted tree with the specified index. Use this to get the corresponding node
in the sorted tree. The sorted index is then found by getting the index of the
sorted node.

The trees support insert, remove and set operations all with O(log N) cost for a
tree of size N. In the diagram, the top box shows a unsorted list and the bottom
box shows the corresponding sorted list. The middle box shows the two trees
and the pointers between their nodes.

This mechanism gives Glazed Lists high-performance sorting when the source
data is dynamic.

